Symmetric indefinite systems for interior point methods
نویسندگان
چکیده
منابع مشابه
Symmetric indefinite systems for interior point methods
We present a unified framework for solving linear and convex quadratic programs via interior point methods. At each iteration, this method solves an indefinite system whose matrix is [_~-2 A v] instead of reducing to obtain the usual AD2A v system. This methodology affords two advantages: (1) it avoids the fill created by explicitly forming the product AD2A v when A has dense columns; and (2) i...
متن کاملPreconditioning Indefinite Systems in Interior Point Methods for Optimization
Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today’s codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless a...
متن کاملPreconditioning Indefinite Systems in Interior-Point Methods for quadratic optimization
A new class of preconditioners is proposed for the iterative solution of symmetric indefinite systems arising from interior-point methods. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Now we introduce two types of preconditione...
متن کاملNewton-KKT interior-point methods for indefinite quadratic programming
Two interior-point algorithms are proposed and analyzed, for the (local) solution of (possibly) indefinite quadratic programming problems. They are of the Newton-KKT variety in that (much like in the case of primal-dual algorithms for linear programming) search directions for the “primal” variables and the Karush-Kuhn-Tucker (KKT) multiplier estimates are components of the Newton (or quasi-Newt...
متن کاملSolving symmetric indefinite systems in an interior-point method for second order cone programming
Many optimization problems can be formulated as second order cone programming (SOCP) problems. Theoretical results show that applying interior-point method (IPM) to SOCP has global polynomial convergence. However, various stability issues arise in the implementation of IPM. The standard normal equation based implementation of IPM encounters stability problems in the computation of search direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 1993
ISSN: 0025-5610,1436-4646
DOI: 10.1007/bf01581257